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ABSTRACT 

Assume G is a superstable group of M-rank 1 and the division ring of 
pseudo-endomorphisms of G is a prime field. We prove a relative Vaught's 
conjecture for Th(G). When additionally U(G) = w, this yields Vaught's 
conjecture for Th(G). 

0. I n t r o d u c t i o n  

Throughout  the paper, T is a small superstable theory, usually with few (that 

is, < 2 ~°) countable models, and we work within a monster model ¢ = ~eq of T. 

We use the standard model-theoretic terminology (cf. [Sh], [Ba], [Hr]). Vaught 's  

conjecture states that  if T has few countable models, then T has countably many 

of them. Thus far, Vaught 's  conjecture has been proved for the case of w-stable 

T ([SHM], [Ba]) and of superstable T of finite U-rank ([Bu2]). 

In [Ne2] I suggested the following approach. Suppose Q is a type-definable over 

subset of a countable model M of T (or even a countable union of such sets), say, 

Q = O(M). Suppose we know how to classify (up to isomorphism) sets of the form 

O(N),  where N is a countable model of T. Then in order to classify all countable 

models of T it is enough, given Q, to see how M "envelopes" Q. In other words, 

it is enough to classify the countable models in KQ = {N: O(N) = Q}. The 
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investigation of the relationship between M and Q led to several conjectures and 

new notions (see [Ne2, Ne3, Ne4]), among others of meager type, meager group 

and 3A-rank. Meager types and meager groups are locally modular and share 

many properties of weakly minimal types and groups. The 2t4-rank of a type p 

measures the size of the set of stationarizations of p. The 2M-rank of a group 

measures the set of generic types of this group. It is proved in [Ne4], [Ne6] that 

if T has few countable models then M-rank  is finite. 

Meager types and meager groups occur quite naturally in superstable strue- 

tures: each properly weakly minimal type and properly weakly minimal group 

are meager. Also, if T is l-based then any regular type is either meager or 

non-orthogonal to a strongly regular type ([Ne6]). A/t-rank of a weakly minimal 

type and group is _< 1 (under the few models assumption); this follows from 

Saffe's condition, proved in [Nel]. In [Pi] A. Pillay proved Vaught's conjecture 

for T = Th(G),  where G is a meager group with the property that each forking 

extension of a generic type in G has Morley rank. From this assumption it follows 

that Ad(G) = 1. 

In this paper we investigate meager groups G of 2t4-rank 1, and in some cases 

prove Vaught's conjecture for Th(G). 

By [Ne6], if T is 1-based and G is a meager group 0-definable in if, then for 

some definable non-generic group H < G, G/H is meager, non-orthogonal to G, 

and has 2t4-rank 1. This justifies (at least for l-based T) our interest in meager 

groups of Jt4-rank 1. 

Supose T = Th(G),  where G is a countable meager group of ]vl-rank 1, and 

we want to prove Vaught's conjecture for Th(G). The most natural set to distin- 

guish in G is the set Q of non-generic elements of G. Notice that Q is a countable 

union of 0-definable subsets of G. In this paper we try to prove Vaught's con- 

jecture for Th(G) relative to Q, that is, to classify models in KQ, and to prove 

that  there are countably many of them. Here we succeed in doing so under 

an additional assumption regarding the geometry of G, namely that the ring of 

pseudo-endomorphisms of G is a prime field. Clearly, if U(G) = w then by [Bu2] 

we have Vaught's conjecture for Th(Q), hence our result gives Vaught's conjec- 

ture for Th(G) (under the above assumptions on G). The proof is an application 

of the techniques of meager types, calculus of traces of types and Q-isolation 

developed in [Ne2, Ne3, Ne4, Ne5, Ne6]. 
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1. Pre l iminar i e s  

Here we recall some notions introduced in some earlier papers. In this paper 

will be a countable disjunction of formulas over 0 (but most of the proofs work 

also for the case when formulas are replaced by types over 0) and Q = ~(M*)  

for some countable model M* of T. Proving Vaught's conjecture for T relative 

to Q consists in showing (under the few models assumption) that  there are only 

countably many countable models in KQ = {M: q~(M) = Q}. Proving Vaught's 

conjecture for T relative to ~5 means proving Vaught's conjecture for T relative 

to any countable Q = ~(M*).  

To construct a model M in KQ means just to find a model M containing Q 

and omitting the type (I)(x) U {x ¢ a, a E Q} (in fact, this is a countable family 

of types). 

Suppose A is a countable subset of some M E KQ. We say that p C S(QA) is 

good if p is realized in some model in KQ containing A. Clearly, good types form 

a dense G~-subset of S(QA) [Ne2]. Let Aut(Q/A) be the set of automorphisms of 

fixing Q setwise and A pointwise. We call the orbits of the action of Aut(Q/A) 

on S(QA) pseudo-types in S(QA) over A. Pseudo-types are Borel, hence have the 

Baire property. We say that  p E S(QA) is Q-isolated over A if the pseudo-type 

over A containing p is not meager in S(QA). A model M C KQ containing A is 

called Q-atomic over A if for every finite tuple a C M, tp(a/QA) is Q-isolated 

over A. 

The following lemma collects the properties of these notions. 

LEMMA 1.1 ([Ne2]): 

(1) tp(ab/QA) is Q-isolated over A iff tp(a/QA) is Q-isolated over A and 

tp(b/QAa) is Q-isolated over Aa. 

(2) If  p C S(QA) is Q-isolated over A, then p is good. 

(3) IrA is finite and T has few countable models, then Q-isolated over A types 

are dense in S(QA). 

(4) If Q-isolated over A types are dense in S~(QA) for every n < w, then there 

is a model M E KQ which is Q-atomic over A. 

(5) If M, M' E KQ are countable and Q-atomic over A, then M and M' are 

isomorphic over A. 

The feature that  distinguishes co-stable theories among small superstable ones 

is the absence of types with infinite multiplicity. In fact [M, A.16], a small 

superstable T is not c0-stable iff some type in T has infinite multiplicity. Hence 

investigating the ways in which multiplicity of a given type may be infinite seems 

a crucial step in an analysis of countable models of T. Now we shall introduce 
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the tools needed to investigate this notion. One of them is a rank A/I, defined on 

all complete types over finite sets, with values in Ord U{~}. AA measures the 

size of the set of stationarizations of a type. 

If A is any set and s(x) any type (possibly incomplete, or even just a 

single formula) over ~ then Trn (s) (the trace of s over A) is the set { tp(a/acl(A))  : 

a realizes s(x)}. Notice that WrA(8 ) is a closed subset of S(acl(A)). TrA(a/B) 
abbreviates TrA(tp(a/B)), and we omit A if A = 0. 

So TrA(a/A) is just the set of stationarizations of tp(a/A) over A, and 

Mlt(tp(a/A)) is just the number of elements of TrA(a/A), which may be finite or 

2 ~°. Thus it does not make much sense to measure TrA (a/A) by its cardinality. 

Instead, M- rank  measures a 'topological size' of TrA(a/A). We define A4 as the 

smallest function satisfying the following conditions for any a, A, B (with A, B 

finite). 

(a) M(a/A) > O. 

(b) For limit 5, J~4(a/A) >_ 5 iff ,~4(a/A) >_ a for every a < 5. 

(c) AA(a/A) > c~ + 1 iff for some B D A with a~B(A), ~4(a/B) >__ ~ and 

TrA(a/B) is nowhere dense in TrA(a/A). 

Clearly, A~(a/A) depends only on tp(a/A), so we may define ~4(tp(a/A)) as 
A/f(a/A). 

In particular ~4(a/A) = 0 means that tp(a/A) has finite multiplicity, while 

M(a/A) = 1 means that p = tp(a/A) has infinite multiplicity; however, for any 

finite set B containing A and any non-forking extension q E S(B) of p, if q is 

non-isolated in the set of non-forking extensions of p in S(B),  then q has finite 

multiplicity (that is, J~ct(q) = 0). 

Regarding (c) above, it should be noted here that for any A C B C_ C and a 

with a.LC(A), either WrA(a/C) is nowhere dense in TrA(a/B) or TrA(atC ) is 

open in TrA(a/B) [Neb, fact 0.1]. This leads to the notion of m-independence 

(refining forking independence), defined by a~J~b(c) iff a.Lb(c) and Trc(a/bc) is 

open in Trc(a/c).  m-independence is similar in many ways to forking indepen- 

dence (see [Ne7]), and is related to M-rank  much like forking independence to 

U-rank. The next lemma contains some of the properties of M-rank  and m- 

independence, holding in a small superstable theory. 

LEMMA 1.2 ([Ne2, Ne3]): 

(1) (symmetry) a~Lb(A) implies b~La(A). 
(2) (transitivity) ab~Lc(A) iff a~Lc(Ab) and b~Lc(A). 
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(3) J~4(a/A) < A/I(ab/A) < A~(a/Ab) ® M(b/A). 
(4) If  a~j~b(m), then J~4(a/Ab) + A4(b/g) < ~4(ab/A). 
(5) Ifa~Lb(d), then A/l(ab/A) = 2~4(a/A)GJ~4(b/A) and M(a/A)  = J~4(a/Ab). 
(6) If J~4(a/d) < oo and a~b(A) then J~4(a/A) = J~4(a/Ab) implies a~Lb(A). 
(7) (existence of non-forking extensions of the same M-rank)  If B D A is 

finite, then for every a there is an a' - a(A) with a'~LB(A) (hence with 

M(a ' /A)  -- M(a' /B)) .  

Most importantly we have 

THEOREM 1.3 ([Ne4, Ne6]): I fT  has few countable models, then for anyp, M(p) 

is finite and M(p) <_ U(p). 

We can measure also closed subsets of S(acl(A)). If P is such a subset then 

M(7)) is defined as max{M(a/B): A C B, a~B(A)  and TrA(a/B) C 7)}. 
M-rank  considerations lead to notions of meager forking and meager type [Ne4]. 

Suppose P is a closed subset of S(acl(A)). We say that forking is meager on 

P if for every formula ~(x) forking over A, TrA(~) n "P is meager (equivalently: 

nowhere dense) in 7 ) . 

Suppose p is a regular stationary type. We say that a formula ~(x) over A is 

a p-formula (over A) if the following conditions hold. 

(a) For each a E ~(~), tp(a/acl(A))  is either regular and non-orthogonal to p 

or hereditarily orthogonal to p. 

(b) The set P~ = {r(x) E S(acl(A)): wv(r) > 0} is closed and non-empty. 

(e) p-weight 0 is definable on ~(~), that is, if a E ~(~) and wp(a/Ae ) = O, 
then for some formula ~b(z, y) over acl(A), true of (a, c), whenever ¢(a ' ,  c') 

holds then Wp(& /Ac') = O. 

By [HS], when p is non-trivial, p-formulas exist over many finite sets A. It is 

quite easy to find them when T is small [Ne4, lemma 1.6]. If p is non-trivial and 

weakly minimal, then any weakly minimal ~(x) E p is a p-formula, p-formulas 

are nice since within them we can work with clp just like with acl in the weakly 

minimal case. 

We say that  p is meager if for some (equivalently: any) p-formula ~ (over some 

A), forking is meager on P~. We say that  a complete type q is meager if every 

stationarization of q is meager. By [Ne4], i fp  is meager, then p is locally modular 

and non-trivial. So when p is meager we define Pm~ as the set of modular types 

in P~. By [Ne4, corollary 1.8], Pm~ is closed and nowhere dense in P~ and 

P~ \ Pm~ is open in S(acl(A)). 
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Meager types may be thought of as generalizations of properly weakly minimal 

non-trivial types. In fact, each properly weakly minimal non-trivial type is mea- 

ger. In a 1-based theory, each regular type is either meager or non-orthogonal to 

a strongly regular type [Ne6, beginning of section 3]. I conjecture this is true for 

an arbitrary superstable theory, under the few models assumption. 

The following property of meager types is a generalized Saffe's condition. 

THEOREM 1.4 ([Ne6]): Assume T has few countable models, A is finite and 

p E S(A)  is meager. Then exactly one of the following conditions holds. 

(1) For some a l , . . . ,  aN realizingp, every r E TrA(p) is realized in clp(Aai) for 

some i. 

(2) p is isolated. 

This theorem says that a non-isolated meager type is small in some respect. 

We say that  a meager p E S(A)  is small if it satisfies (1) in the above theorem. 

COROLLARY 1.5 ([Ne6]): Assume T has few countable models, A is finite, p E 

S(A)  is regular and forking is meager on TrA (p). Then 

(1) p is meager and isolated, and 

(2) J~4(p) = 1 ÷ max{,t~4(q): q E Sp,ns(AB): B is finite and q is small}. 

(1) in the above corollary implies that the formula isolating p there is an r- 

formula for any stationarization r of p. Sp,nf (AB) denotes the set of non-forking 

extensions of p in S(AB) .  

Suppose p is meager. Since p is locally modular, there is a definable regular 

group G non-orthogonal to p. Hence given a regular definable abelian group G we 

say that G is meager if any generic type of G is meager. The notions of meager 

forking, meager type and meager group are defined in an arbitrary superstable 

theory. 

In this paper we are concerned with meager groups. Now we introduce some 

notation (see [Ne4, Ne6]). Suppose G is a regular 0-definable abelian group 

with locally modular generic types and p* is the generic type of G °. Let ~ be 

the set of generic types of G and Gm be the set of modular types in G. Gm 

denotes the A-definable over ~ subgroup of G generated by Gm. For p, q E ~, 

p ÷ q -= stp(a ÷ b) for any independent realizations a, b of p, q respectively. For any 

A, Sg~,~(A) -- ( tp(a/A):  a E G is generic over A}. Notice that G is a p*-formula. 

In [Ne4] we prove that 6m is closed and G \ Gm is open in S(acl(~)). Moreover 

(under the few models assumption), G is meager iff Gm is nowhere dense. We 

define ~4(G) as J~(6) .  
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By [Hr], clp. on G o is essentially a vector space dependence over a division 

ring Fa of definable pseudo-endomorphisms of G. When G is meager, then every 

element of Fa is acl(0)-definable (or rather: is equivalent to an acl(0)-definable 

one). In this case FG is countable, and even (by smallness of T) is a locally finite 

field (hence has non-zero characteristic) (see [Lo, Ne4]). In the context of G we 

can restate Theorem 1.4 and Corollary 1.5 as follows. 

Suppose p C Sgen(A). Then p is meager, so Theorem 1.4 applies. If (2) holds, 

then p is isolated. Otherwise (1) holds; however, in [Ne4] it is proved that  within 

G, clp(Aai) NG is a finite union of cosets of Gin. So we have the following theorem. 

THEOREM 1.6 ([Ne6]): Assume T has few countable models, A is finite, G is a 

O-definable meager group and p E Sgen(A). Then either p is isolated or Tr(p) C_ 

Ui ri + ~rn for some finitely many  rl,  . . . , r~ E Tr(p). 

Since Ad(G) equals M(p)  for any isolated p E Sg~n(0), and for a locally 

modular abelian G, G is meager iff ~rn is nowhere dense, we have the following 

corollary. 

COROLLARY 1.7 ([Ne6]): Assume T has few countable models and G is a O- 

definable locally modular abelian group. Then Ad(G) = M ( G m )  + 1 when G is 

meager, and A,t(G) = jt4 (Grn) otherwise. 

Suppose there is a non-generic 0-definable subgroup H of G such that for a 

realizing p*, a + H contains a realization of any type in Grn. Let G r = G / H .  

Clearly G t is non-orthogonal to G. In this situation Corollary 1.7 yields that 

Ad(G') = 0, that  is, G ~ is strongly regular (in the case, when G is not meager) 

and G'  is meager with Ytd(G ~) = 1 (when G is meager). Due to the form of 

definable sets in 1-based groups [HP], when T is 1-based, such an H exists. So 

we get the following corollary. 

COROLLARY 1.8 ([Ne6]): Assume T is 1-based, with few countable models, and 

G is a O-definable locally modular abelian group. Then there is a non-generic 

O-definable subgroup H of G such that: 

(1) i f  G is meager then G / H  is meager and A d ( G / H )  = 1, 

(2) i f  G is not meager then G / H  is strongly regular, hence jr4 ( G / H )  = O. 

There is also a group-free version of this corollary [Ne6, 3.2], but we shall 

not use it here. Corollary 1.8 justifies our interest in meager groups of 2t4- 

rank 1. Suppose G is a meager group of M-rank  1. In this paper we try to 

classify countable models of Th(G); in other words, to classify sets of the form 

G(M),  where M is a countable model of T. Our classification relies on the 

geometrical properties of elp., and is relative to clv. (~) N G(M) .  Notice that  
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clp. (0) A G is a countable union of 0-definable sets. To simplify the proofs, 

we add to clp. (0) N G the set acl(0). So let ~ be a countable disjunction of 

formulas defining acl(0) U (G N clp.(0)), let M* be a countable model of T and 

let Q = ~(M*).  We try to count the groups of the form G(M), where M is 

countable and Q = (I)(M). 

In general we succeed only partially: we manage to count sets of the form 

GM, where M is countable and ~ (M)  = Q. Here G M is the set of types r E G 

realized in M. In case when the ring of pseudo-endomorphisms FG is particularly 

simple (e.g. is just a prime field), this yields a classification of the sets G(M), 
and relative Vaught's conjecture over Q. 

Q may be regarded as a model of a many-sorted theory T[6p (cf. [Pi]). When 

G has U-rank w, then TIC has finite U-rank and Vaught's conjecture is proved 

for T[(I) [Bu2]. Hence in this case we get Vaught's conjecture for Th(G). 

The proofs essentially generalize [Bul] (Buechler considered the weakly mini- 

mal case there) and [Pi] (Pillay considered a meager group G with the property 

that  T [ ~  is w-stable; in this case necessarily A/I(G) = 1). Pillay's proof relied 

heavily on the assumption that T [ ¢  is w-stable. Here we use instead the prop- 

erties of M- rank  mentioned above. In [Pi], at the final stage, G(M) is proved 

to be atomic over a countable skeleton (built up from some Morley sequences). 

Here we show that  G(M) is Q-atomic over some Morley sequence. In virtue of 

Lemma 1.5, this is enough. 

2. A basis  l e m m a  

From now on in this paper we assume T has few countable models. In this section 

we generalize the following result of Steven Buechler [Bul, lemma 5.2]: 

( . )  If M is a countable model ofT,  then there is a finite set A C_ M of elements 

realizing properly weakly minimal types, such that for every a E M with 

A/l(a/O) = 0 and r = stp(a) properly weakly minimal, rlA is modular (if 

r is not modular, this implies r is realized in acl(A)). 

We deal with the following situation. O(x) is a countable disjunction of for- 

mulas over ~, Q = ~(M*) for some countable model M* of T and acl(~) C Q. 

We are interested in countable models M E KQ. We shall generalize (*) for 

such M by replacing properly weakly minimal types by some locally modular 

types, which are orthogonal to ~. (*) says that within a model M there is a 

"basis" (the set A) for certain small properly weakly minimal types realized in 

M. Here "small" means "having finite trace". When we work in KQ, it is the 
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size of the Aut(Q)-orbits (pseudo-types) that provides the dividing line between 

"small" and "large" types. So we are looking for a finite "basis" for all small 

Aut(Q)-orbits of some locally modular types. 

We shall need some additional analysis of traces of non-isolated types in a p- 

formula. Suppose p is a stationary meager type and qo(x) is a p-formula over 0. 
For any finite set B let 

and 

d(B) = O{Tr(a/B):  stp(a) • P~o,a.~B and tp(a/B) is non-isolated} 

CL(B) = {r • P~o: riB is modular}. 

So r • CL(B) iff r • P~o and r is modular or r is realized in clp(B). Also, by 

lemma 2.13 from [Ne4], CL(B) is closed nowhere dense in P~,, Pm~, = CL(0) 

is open in CL(B) and for some ao, . . . ,ak-1 with stp(a/) • CL(B) we have 

CL(B) : Ui<k CL(ai). 

LEMMA 2.1 : 

(1) d(B) is dosed and nowhere dense. 
(2) CL(B U d(B)({)) = d(B). In particular, CL(B) C d(B). 

Proof: (1) The proof is similar as in [Ne4, corollary 1.8], and uses smallness 

of T. 

(2) Suppose r • CL(B U d(B)(g)). Wlog r is not modular. So there are 

a l , . . . ,  an realizing types in d(B) such that r is realized in clp(Bal , . . . ,  an), i.e. 

r • CL(Bal .. .  an). Wlog ai.J,B. Let qi = tp(ai/B). So q{ is non-isolated. Let 

X = U{CL(Ba~ . . .  a'n): a~ realizes qi}. Since qi is non-isolated, by Theorem 1.4, 

U{CL(a'/): a' i realizes qi} = U CL(b}) 
j<ki  

for some b~, b i realizing qi. Hence " ' ' '  k i - 1  

x =  U U " @ cL(Bb ,b  
j l < k l  j2<k2 jn<kn 

By [Ne4, lemma 2.13], CL(Sb}l . . .b} ' )  is closed nowhere dense, hence also X 

is closed, nowhere dense and Aut(~/B)-invariant. So clearly X C d(B). Since 

r • CL(Bal . . .  a,,) _C_ X, we are done. 

It may happen that  CL(B) ¢ d(B). The next proposition is similar to 

[Ne4, lemma 2.13], which deals with CL(B). 
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PROPOSITION 2.2: There are finitely many elements a l , . . .  , ak realizing types in 

d(B) such that d(B) = Ui CL(ai). 

Proof'. The proof consists in reducing the proposition to the case when qo defines 

a group, and in this case the proposition is easy. 

By [Ne6, corollary 1.3] there is a meager group G definable over clp(l~), which 

is non-orthogonal to p. Since naming clp(O) does not affect CL, we can assume 

that  G is 0-definable. Increasing B, we can assume that every r E P~, is not 

almost orthogonal (over B) to some r '  E 6, and vice versa. 

Let d'(B), CL'(B) be defined as d and CL, but with respect to G and 6 instead 

of ~, P~. We have that 

d'(B) = U{Tr(q):  q E Sge,~(B) and q is non-isolated}. 

For q E S~,~(B) let X(q) be the union of 6m-cosets meeting Tr(q). By Theorem 

1.6, if q E Sgen(B) is non-isolated then Z ( q ) / 6 m  is finite, hence X(q) is nowhere 

dense. Also, X(q) is B-invariant, hence if q is non-isolated then X(q) C d'(B). 

This shows that  d'(B) is a union of some number of 6m-cosets, and, by Lemma 

2.1, d' (B) is closed and nowhere dense. We see that for r E 6, r E d' (B) iff the 

Aut(~/B)-orbi t  of r / g m  is finite. It follows that for r, r '  E d'(B), r + r' E d'(B) 

and ( - r )  E d'(B). So d'(B) is the set 6 '  of generic types of some generic subgroup 

G' with Gm C G' C_ G. By Corollary 1.7, Ad(Gm) + 1 = Ad(G). Since 6 '  is 

nowhere dense in 6, this implies that Gm has finite index in G' (see [Ne6]); in 

other words, there are finitely many generic b0, . . . ,  bk E G' with d'(B) = g' = 

Ui (gm + stp(bi)) = Ui CL'(bi). Choose ai realizing a type in p~, with ai•bi. By 

Lemma 2.1 (applied to q0'(z) = ~o(x) V G(x)) we get that  d(B) = Ui ca (a / ) .  

Suppose p E S(O) is locally modular. Then there are three cases: 

(1) p is not meager, 

(2) p is meager and non-isolated, 

(3) p is meager and isolated. 

The next lemma deals with Tr(p) in the first two cases. 

LEMMA 2.3: Assume p E S(0) is locally modular. 

(1) If p is not meager, then there is a finite set B of independent realizations 

of p such that every r E Tr(p) has a forking extension over B. 

(2) If  p is trivial or (meager and non-isolated), then there is a finite set B as 

above, such that every r E Tr(p) has a forking extension over some b E B. 
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Proof: (1) If p is not meager, by Corollary 1.5 forking is not meager on Tr(p). 

Revealing the definition we get the required B. 

(2) If p is trivial, we proceed as in [Ne4, lemma 1.6(1)] (see also the proof of 

theorem 2.6 in [Ne6]). If p is meager and non-isolated, the conclusion follows by 

Theorem 1.4. 

Now suppose p E S(0) is locally modular orthogonal to (I). Then for any 

r E Tr(p),  r F riQ. So hu t (Q)  acts on Tr(p), and we are interested in the orbits 

of this action (pseudo-types). Notice that  the topology on Tr(p) is metrizable, 

say, by the metric p. The next lemma deals with the case when p is meager and 

isolated. In the proof we will need the following claim. 

CLAIM 2.4: hu t (Q) ,  regarded as a family of mappings  on Tr(p),  is uni formly  

continuous, that  is, for every e > 0 there is e' > 0 such that for every f E Aut(Q) 

and all x , y  E Tr(p), i f  p ( x , y )  < ~' then p ( f ( x ) , f ( y ) )  < E. 

Proof: Notice that  for every formula 6(x ,y )  the set D = {r[5: r E Tr(p)} is 

finite. Also, for any r E Tr(p) the set Dr,5 = {r'  E Tr(p): r]6 ---- / [ 6 }  is clopen 

in Tr(p). Moreover, sets of the form Dr,~ are a basis of the topology on Tr(p). 

Clearly, if f E hu t (Q)  and r]6 = r']5 then f (r)15 = f(r ' )]6.  This proves the 

claim. 

LEMMA 2.5: A s s u m e  p E S(O) is meager, isolated and orthogonal to O~, r* E 

Tr(p),  X is the h u t ( Q ) - o r b i t  o f t * .  Then  either X is open in Tr(p) or there are 

f ini tely m a n y  types  ri E X such that every r E X is not  almost  orthogonal to 

some ri. In the lat ter  case X is nowhere dense. 

Proob. Wlog all stationarizations of p are non-orthogonal. First we prove that  

(a) if X is meager, then there are finitely many types ri E X such that  every 

r E X is not almost orthogonal to some ri. 

Suppose (a) fails. We shall construct many models of T. Let a realize a type in 

X. We can choose isolated types p,~ E S ( a ) , n  < w, such that  for every n, p~ 

is a non-forking extension of p, Xn = Tr(pn) N X is non-empty and {stp(a)} = 

O >k 'e(p,,). 
Indeed, if for some open neighbourhood U of stp(a) we have that  U N X is 

disjoint from Tr(p') for any isolated p'  E Sp,n.f(a), then we get that  U N X  C d(a), 

hence by Proposition 2.2 there are finitely many types ri E U N X  such that  every 

r E U N X  is not almost orthogonal to some ri. Since X may be covered by finitely 

many Aut(Q)-translates  of U, we would get (a). 
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We shall find an almost orthogonal subfamily {pn~,i < w}. We define 

recursively an increasing sequence of natural numbers n/, i < w so that for every 

i < w the following holds: 

(b) If a0 , . . - ,  a / real ize Pn0,.--,Pn~ then stp(a/) ~ d(aao,..., a~-l). 

Suppose we have defined n o , . . . ,  nj so that for all i < j ,  (b) holds. This implies 

that  for every i < j ,  the set of types Zi = {tp(a~. . .a~/a) :  a~ realizes p,~, for 

t _< i} is finite. 

Indeed, Z0 is finite trivially. Suppose i < j and Zi is finite, say Z~ = 

{tp(bt/a): t < k~} for some ki. By (b), Tr(p~+~) N d(abt) = 0 for every t. 

It follows that  P,~+I has only finitely many non-forking extensions over abt, and 

all of them are isolated, hence there are finitely many of them. Thus Zi+l is 

finite. 

Let Zj = {tp(bt/a): t < kj}. We have that d(abt) meets Tr(pn) for at most 

finitely many n. Indeed, by Proposition 2.2, d(abt) is a finite union of sets of the 

form CL(c), where stp(c) E d(abt), so if d(abt) meets Tr(pn) for arbitrarily large 

n, then for some c realizing some pn, CL(c) meets Tr(pn) for arbitrarily large n. 

Since {stp(a)} = ~k U~>k Tr(p~) and CL(c) is closed, we get stp(a) E CL(c), 

hence a~[~c. But Pn is isolated, so c~a, a contradiction. 

So we can choose ni+l  > nj such that for every t, d(abt) M Tr(p~+l)  = 0. We 

see that  (b) holds with this choice of nj+l for i -- j + 1. 

Clearly, (b) implies that  {p~, i < w} is an almost orthogonal family of types. 

Choose ai realizing a type in Xn~. By the omitting types theorem, for any 

I C_ w we find a model M1 E KQ containing a and hi, i E I ,  and omitting every 

type in X,~, i ¢ I.  Indeed, since Xn, is meager, it is covered by a countable 

union of closed nowhere dense subsets of Tr(pn~). Each such subset of Tr(pn,) 

is of the form Tr(q) for some non-isolated (possibly incomplete) type q over 

acl(0) and since Tr(q) C Tr(p~)  and p~  E S(a) is isolated, q has no forking 

extension over a (otherwise each type in Tr(pn~) would have a forking extension 

over a, contradicting the meager forking assumption). Since {pn~,i < w} is 

almost orthogonal, q has no forking extension over {a} U {a~ : i E I} U Q, hence 

is non-isolated over {a} U {a,~: i E I} U Q. We can omit the countably many 

types q by a model in KQ. 
Hence for I ~ I' C w, MI, MI, are non-isomorphic (over a). So we get 2 s°- 

many countable models. This contradiction proves (a). 

Now for every r E Tr(p) the set of r t E Tr(p) not almost orthogonal to r is 

closed and nowhere dense ([Ne4, lemmas 1.8, 2.13]), so by (a) if X is meager then 

X is nowhere dense. So to prove the lemma it is enough to show that  
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(c) X is either open or nowhere dense. 

Suppose not. Let X '  = int(cl(X)). Notice that since X is an Aut(Q)-orbit,  for 

any r E X' ,  the Aut(Q)-orbit  of r is contained in X '  and dense in X '  (this follows 

from Claim 2.4). 

X, being Borel, has the Baire property, so is co-meager in some open set 

U c S(acl(0)). Clearly U c__ cl(X). It follows that X C X'  and X is co-meager 

in X I. Since X is not open, X / \ X  ¢ 0. Let X* be any orbit contained in 

X ~ \  X. So X* is meager and dense in X ~, hence is not nowhere dense. This 

contradicts (a) (modulo the remark before (c)). 

The following is a generalization of (*). 

THEOREM 2.6: Assume q)(x) is a countable disjunction of formulas over 0 such 

that acl(0) C_ g~(¢), M is a countable model o fT ,  Q -- q~(M), and let (**) be the 

following condition: 

(**) r E S(acl(0)) is locally modular orthogonal to • and the Aut(Q)-orbit  of 

r is meager. 

Then there is a finite independent set BM C_ M of elements realizing types r 

satisfying (**) and such that, for any r satisfying (**), if  r is realized in M then 

r has a forking extension over BM. 

Proof: It is easy to see that  it suffices to find a finite independent set B of 

elements realizing types with (**) such that 

(a) every type r with (**) has a forking extension over B. 

Indeed, suppose we have such a B. Since w(B) is finite we get that there is no 

almost orthogonal family {rn, n < w} of types with (**). It follows that within 

any M as in the theorem we can find the required set BM. 

By Lemmas 2.3 and 2.5, if X is the Aut(Q)-orbit of a type r satisfying (**), 

then there is a finite set B x  of independent realizations of types in cl(X) such 

that  any r ~ E cl(X) has a forking extension over B x .  

By [Ne3], there are countably many sets of the form cl(X). Indeed, cl(X) is 

Aut(Q)-invariant and closed. Also, all the Aut(Q)-orbits contained in cl(X) are 

dense in cl(X) (by Claim 2.4), so cl(X) contains a unique co-meager Aut(Q)- 

orbit (by [Ne3], this is a variant of Lemma 1.1(3)). Clearly this Aut(Q)-orbit  is 

z-stable, and by [Ne3] there are countably many z-stable good pseudo-types. 

Choose countably many Aut(Q)-orbits X n , n  < w, of types r with (**), such 

that  for every orbit Y of a type with (**), cl(Y) = cl(Xn) for some n. Let (t) be 

the following statement: 
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(t) For every finite set B of independent realizations of types with (**), for 

infinitely many n < w, no r E cl(Xi) has a forking extension over B. 

CLAIM 2.7: -~(t) implies (a). 

Proof Suppose (t) fails for some finite set B. Extending B a little we can 

assume that  for any n < w, some r~ E cl(Xn) has a forking extension over B. 

Let X'~ be the Aut(Q)-orbit  of r~. By Claim 2.4, X~ is dense in X~. It  follows 

that  for every r E X~n there is some B '  = I[B] (for some f E Aut(Q)) such that  

r has a forking extension over B'. Suppose B = {b0, . . . ,  bk} and let O~ be the 

Aut(Q)-orbi t  of stp(b{), i < k. Choose a finite set Co of independent realizations 

of types in Us o i  such that  every s E Ui Oi has a forking extension over Co. Let 

C 0 , . . . , C k  be a Morley sequence in stp(C0) and let C = U~ c , .  To prove the 

claim it is enough to show that  

(b) every r E cl(Xn) has a forking extension over C. 

First assume r E X~. Choose f E Aut(Q) and B '  = I[B], B'  = {b~o,..., b~} 

such that  r has a forking extension over B ~. Suppose wlog that  r is non-orthogonal 

to s tp(b~) , . . . ,  stp(b~) and orthogonal to stp(b~+l), . . .  ,stp(b~). Choose b~' ~ b~ 

with b~'~C~ and such that  {Cib~': i ~ k} is independent. Let B"  -- {b~, . . . ,  b~}. 

Clearly, for some a realizing r, a ~ B ' .  If h i ,  C o . "  Ci then a~Co . . . Cib~t+l . . . b~. 

Since b~ , . . . ,  b~' depend on C o" -C ~ ,  also a ~ B " C o . . .  Ci, hence a ~ B " ,  a con- 

tradiction. So a ~ C  showing that  r has a forking extension over C. 

Now let Y~ be the set of r E cl(X~) with a forking extension over C. Since X~ 

is dense in cI(Xn), also Y~ is dense in cl(Xn). Choose p E S(~}) with Xn C Tr(p). 

We need the following subclaim. 

SUBCLAIM 2.8: The set Z of types r E Tr(p) with a forking extension over C is 

closed. 

Proof We can assume that  all types in Tr(p) are non-orthogonal (anyway the 

non-orthogonality classes on Tr(p) are clopen in Tr(p)). The case when p is 

modular  is easy. So assume p is non-modular. 

If p is isolated and meager, we are done by [Ne4, lemma 2.13] (since Z = 

CL(C)).  

Suppose p is not isolated or not meager. Let Z ~ = cl(Z). By smallness, Z 

has non-empty interior in Z t, that  is, for some (relatively) open U c_ Z t we have 

UC_Z. 

By Lemma 2.3 there are finitely many almost orthogonal ri E Z such that  for 

every r ~ E Z t we have 
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(c) r ' ; :  ®i ri. 

To find the  ri,  first find finitely many  almost  or thogonal  ri E U such tha t  for any 

r' E U, (c) holds. Then  add finitely m a n y  almost  or thogonal  ri C Z to ensure 

t ha t  (c) holds for every r ~ E Z ~. 

By (c), Z r = Z and the  subcla im is proved. 

By the  subc la im we see t ha t  Yn is closed, hence Yn -- cl(Xn), proving (b) and 

the claim. 

By Cla im 2.7, in the fur ther  proof  of Theorem 2.6 we may  assume tha t  (t) 

holds. In this case we will reach a contradict ion const ruct ing m a n y  models  of T. 

We find recursively an increasing sequence ni, i < w and finite sets Bi such 

tha t  the  following hold: 

(d) Bi is an independent  set of realizations of types  in cl(Xni) and every type  

r E cl(X~i)  has a forking extension over Uj_<i Bj .  

(e) [.J~ Bi is independent .  

(f) No r E c l ( X ~ )  has a forking extension over Uy<~ Bj. 

I t  is clear how to satisfy (d), (e). If  at some point  no ni can be chosen to sat isfy 

(f), this would mean  tha t  for some co-finite set I C w, for every m C I ,  some 

r E cl(X~) has a forking extension over B = Uj<i  By, contradic t ing (~). 

Choose ai realizing a type  in Xn~. By (d), (e), (f), the set {a i , i  C I}  is 

independent  and no type  in cl(Xn~), i ~ I ,  has a forking extension over it. We 

see t ha t  for any  I _C w there is a model  M1 E KQ containing a/, i E I ,  and  

omi t t ing  every type  in X , ~ , i  ~ I (as in the proof  of L e m m a  2.5). So we get 

m a n y  countable  models  of T. 

3. A ground level l emma 

In this section we adap t  to our context  theorem 4.1 from [Bull, which we s ta te  

here in the  following form: 

(*) Suppose  Aa is a finite independent  set of elements  realizing over ~ proper ly  

weakly min imal  types.  If 3d(a/A) = 0 and Ad(a/O) 7~ O, then  ei ther  

stp(a/A) is modular ,  or else, for some b with tp(b) weakly min imal  and 

Ad(b/O) = O, a and b are interalgebraic over A. 

Exis tence  of an a as in (*) is a ma jo r  obstacle  in [Bull in showing tha t  M is p r ime 

over some independent  set A. (*) says how to deal with this case: this obstacle  
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is pulled down to the ground level, i.e. a is replaced by some b with A4(b/O) = O, 
and then b is dealt with using the basis lemma from the previous section. 

In this section we fix the following set-up, ff~ is a countable disjunction of some 

formulas over 0, acl(0) _C ff)(~) and Q = ff)(M*) for some countable model M*. 

If r E S(acl(O)) and C is finite, we call the Aut(Q/C)-orbit of r an Aut(Q)-orbit  

of r over C. We say that r is Q-finite over C if this orbit is finite. We fix a 

meager stationary type p E S(0), which is orthogonal to ~. We are interested in 

p-formulas ~ over acl(0) satisfying A//(P~) = 1. So in this section we say that a 

is regular if stp(a) is regular non-orthogonal to p and a realizes some p~formula 

T(x) over acl(O) with A4(P~) = 1. We say that a is Q-finite over C if stp(a) is 

Q-finite over C. We can restate Lemma 2.5 in this set-up as follows. 

LEMMA 3.1: Assume a is regular. 

(1) Either tp(a) is isolated (and then At(a/O) = 1) or M ( a / 0 )  = 0. 

(2) The Aut(Q)-orbit ofstp(a)  is either open or ~nite. 
(3) tp(a/Q) is Q-isolated iff a is not Q-finite iff the Aut(Q)-orbit of stp(a) is 

open. 

Proof." Choose a p-formula ~(x) over acl(O), true of a. Wlog ~ is a p-formula 

over O. So we have that  Tr(a/O) C_ P~, A4(P~) = 1 and P~ = P~ \ Pm~ is open 

in S(acl((~)). Also Pm~ is closed and nowhere dense in P~. So A~(a/O) <_ 1. 
(1) If tp(a) is isolated then Tr(a/O) is clopen in P~. Forking is meager on P~, 

hence A~(a/O) > 0, i.e. A/t(a/O) -- 1. Suppose tp(a) is non-isolated and Tr(a/~) 
is infinite. By smallness choose a type q e S(0) with Tr(q) clopen in P~. It 

follows that  q is isolated, hence A/t(q) = 1. Let b realize q. It is not hard to find 

over ab a non-forking extension q' of q ("translating" Tr(a/O) into Tr(q)) such 

that  Tr(q') is infinite and nowhere dense in Tr(q). Hence M(q)  > A4(q') > 1, a 

contradiction. 

(2) If tp(a) is non-isolated, then, by (1) A4(a/O) = 0 and we are done. 

If tp(a) is isolated then we can apply Lemma 2.5. Let X be the Aut(Q)-orbit  

of stp(a). If X is not open then there are finitely many types ri E X such that  

every type r' E X is not almost orthogonal to some ri. But for each i, the set 

X~ of types in P~ not almost orthogonal to ri is finite (since it is closed and 

A4(P~) = 1). So X is finite. 

(3) Since p is orthogonal to ~, for any r E P~, r P rlQ. So the Aut(Q)-orbit  of 

r is homeomarphic to the Aut(Q)-orbit of r[Q. If a is Q-finite then the Aut(Q)- 

orbit of stp(a) is a finite subset of P~, hence is nowhere dense in P~, i.e. tp (a /Q)  

is not Q-isolated. If a is not Q-finite, then the Aut(Q)-orbit of stp(a) is open, so 

tp(a/Q) is Q-isolated. 
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The following is a generalization of (*). It is also a generalization of lemma 

2.1 of [Pi]: the conclusion is roughly the same, but our assumptions are weaker. 

Pillay assumes additionally that  each forking extension of stp(a) (for any regular 

a) has Morley rank, and considers the case Q = 0. 

THEOREM 3.2: Suppose Aa is a finite independent set of regular elements, a is 

Q-finite over A, but not Q-finite over 0. Then either s tp(a/A) is modular or, for 

some regular Q-finite b independent of A, a~b(A) .  

Proof." Suppose s tp(a/A)  is not modular. As in the case when Q = 0 one can 

prove tha t  if b E A and b is Q-finite over A \ { b ) ,  then a is Q-finite over A \ { b ) .  

So choose a minimal subset A' of A such 

over A'. As in the case of types of finite 

over A ~. So wlog A = A'. 

Let e E  A and B = A \ { c } .  We can 

that  for every a ~ E A \ A ~, a' is Q-finite 

multiplicity it follows that  a is Q-finite 

also assume that  a is not Q-finite over 

B. Hence the Aut(Q)-orbit  of a over B is open. Let X be the Aut(Q)-orbit  of 

stp(c) over B. We see that  X is open in S(acl(O)). Expanding the signature by 

an element of acl(0) we can assume that  the Aut(Q)-orbit  of stp(a) over Bc  is 

{stp(a)}. Clearly all types in X are non-orthogonal. 

CLAIM 3.3: I f  C is a finite B-independent set of  realizations of  types in X ,  then 

the set of types r E X with finite Aut(Q)-orbit  over B C  has no accumulation 

point in X .  

Proof: The proof is similar, e.g., to that  of [Ne7, lemma 2.1]. To simplify 

notation, absorb B into the signature. Let Y = {r E X: the Aut(Q)-orbit  of r 

over C is finite) and Z -- cl(Y) M X. We want to show that  every point of Z is 

isolated (in Z). 

Z is Aut(Q)-invariant over C, hence is a union of some orbits over C. None 

of these orbits is open (since Y is dense in Z), so by Lemma 3.1 each of them is 

finite and Z -- Y. Also, the perfect core Z ~ of Z is empty. (Otherwise Z ~ has 

power continuum and contains an orbit over C, which is not meager in Z t. This 

orbit is neither finite nor open in S(acl(0)), contradicting Lemma 3.1.) Hence Z 

is countable and points isolated in Z are dense in Z. 

Suppose r E Z is an accumulation point of Z. Pick an isolated r ~ E Z. Using 

local modular i ty  and basic properties of meager types it is easy to "translate" 

a sequence of types from Z converging to r into a sequence of types from Z 

converging to r t, a contradiction. 

Let rc = stp(a). For any d realizing a type in X let re, be the unique image 

of rc under any Q-mapping fixing B pointwise and sending c to d.  
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X splits into infinitely many Aut(Q)-orbits over Bc. Since by Lemma 3.1 all 

of them are either finite or open, the open ones are dense in X. So we can 

choose open Aut(Q)-orbits X~ C_ X, n < w, over Bc, such that  they converge 

(topologically) to stp(c). Notice that  c l ( X ~ ) \  X~, being a nowhere dense set 

and a union of Aut(Q)-orbits over Bc, must be a union of finite Aut(Q)-orbits  

over Bc. 

Since some neighbourhood of stp(c) contains no finite Aut(Q)-orbits over Bc 
(by the claim), discarding some Xn's, we can assume that  all the X~'s  are clopen 

in S(acl(0)). 

By the claim, discarding some X~'s, we can assume that  for every n, if ci 

realize types in X~ for i < n then no type in Xn is Q-finite over Bc{ci , i  < n}. 
By the "exchange property" of Q-finiteness this implies that  whenever I _C co is 

finite, j E co \ I and c/realizes a type in Xi, i E I ,  then no type in Xj  is Q-finite 

over Bc{c~,i E I}. 

Indeed, in the above notation we have that  if stp(cj) is Q-finite over 

Bc{ci , i  E I W {i0}} and is not Q-finite over Bc{ci, i  E I},  then stp(cio) is 

Q-finite o v e r  Bc{ci, i E I U {j}}. 

Suppose that  

(a) /if n < co and Cl, . . . ,c~ realize types in X,  ai realizes r~ , i  < n, 
{ai,ci , i  < n} is Bc-independent and cn+l realizes a type in X with 

open Aut(Q)-orbit  over Bc{aici,i  < n}, then rc~+l is non-isolated over 

acl(O) U Bc{a~ci, i <_ n}c~+l (equivalently: rc~+l has no forking extension 

over Bc{aici, i < n}cn+l). 

In this case we shall construct many countable models of T. Let I C w. Choose 

ci realizing a type in Xi for all i E I .  By the omitting types theorem, we can find 

a model M E KQ containing Bc{ci, i E I},  realizing re, for i E I and omitting rc~ 

for any j E w "- I and any c~ E M realizing a type in Xj.  This is enough, since 

we can then recover I from M. This idea is similar to [Bul]. However, since we 

are working in KQ, we cannot apply the omitting types theorem directly. 

Specifically, choose a/ real iz ing rc,,i E I, with {ai, ci,i E I} Bc-independent. 
! 

Let B' = Bc{aici, i  E I}.  We find a B'-independent sequence cn, n E co, such 

that  

' realizes a type in some Xj,  j E co \ I, (b) c~ 

! ! ! (c) there is no c' realizing a type in some X j , j  E w \ I, with c ,~B c<n 
! ! 

r~, isolated over acl(0) U B c<n , and 

and 
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/ /  ! (d) %~ is not  Q-finite over B c<n for any finite B "  C_ B t. 

' ' Choose any X j , j  ¢ I, Suppose we have found ci, i < n, and want to choose %. 

realizing some type  in Xj such tha t  (d) holds. If for some c ~ as in and any c n 

(c), re, is isolated over acl(0) U B'c_<~,' then for some finite B" C_ B', c'.J~B"c~<n_ 
and re, is isolated over acl(0) U " t3 C<n. 

Suppose for a contradict ion tha t  stp(c ')  is Q-finite over B"C~<n . If c'.~B"c~<n, 
I !  ! then by the inductive hypothesis  re, has no forking extension over B c<~, but  

I /  l I I  I has a forking extension over B c<~. I t  follows that re, is Q-finite over B c<~, 

' is Q-finite over B'c'  hence also % <n, a contradiction. 
I I I  I I I I I  I I If c . ~ B  c<~, then c .~%(B C<n ) so again we get tha t  % is Q-finite over 

/ !  ! 
B c<n, a contradiction.  

Hence stp(c ' )  is not  Q-finite over B"c~<~. This gives c',~C~n(B"c~<~) hence r~, 
I I  I / has a forking extension over B c<nc. This contradicts  (a). 

Now let B* = B'{c'n, n < w}. We can arrange the choice of c~, n < co, so tha t  

{stp(c~), n < a~} is dense in every X j , j  ¢; I. By the omit t ing types theorem we 

can find a model  M E KQ containing B* such tha t  for each j ~ I, X j (M)  C_ 
clp(B*) and, for each c' E Xj(M),  M omits re,. Specifically, we omit  the following 

types: 

Firstly, for each j ¢ I ,  we omit the type Xj(x) U {"x ¢ ClB(B*)"}. Secondly, 

there are countably  many  types rn E Uj¢i x j ,  n < w, realized in clp(B*). Each 

such type  r~ determines uniquely a non-isolated type  Pn = tp(a'c'/Q), where c' 

realizes r~ and a ~ realizes r¢,. So we can omit also all the types pn, n < w. 

But  we have assumed tha t  T has few countable models. Hence (a) is false, 

which means tha t  for some n < w we find 

(e) e l , . . . ,  a n realizing types in X,  ai realizing re,, i <_ n with {ai, ci,i < n} 
Be-independent ,  and c~+1 realizing a type  in X with an open Aut (Q)-orb i t  

over Bc{aici, i < n} and rcn+l isolated over acl(0) U Bc{aici,i < n}cn+l .  

This means  tha t  for some a~+~ realizing rc~+,, 

Cn+l.J~Bcc<na<n and an+lcn+l.~Bcc<na<n. 

Both  an+l  and Cn+l are not  Q-finite over Bcc<~a<n. Now we are in a s i tuat ion 

similar as in the proof  of [Pi, l emma 2.1]. We can choose n to be minimal  possible. 

This implies tha t  for i < n, rc~ is not realized in clp(Bca<ic<<i). Enumera te  

Bca<nc<~ as {bi, i < m} so tha t  the elements of B appear  first, then c and then 

(cj, aj, j < n). We can assume (discarding some last bi's if needed) tha t  rc,+~ is 

not  realized in clp(b<mcn+l). 
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Now let C = Cb(a,~+iCn+l/b<_m) and choose a finite b C_ C with C c_ acl(b) 

(by superstability). We shall prove that b satisfies our demands with respect to 

the set A'a' = BCn+lan+l. Since Bcn+lan+l and Aa are Aut(Q)-conjugate, this 

will be enough. Specifically, we will prove that 

b is regular, Q-finite, independent of BCn+l and a~+l ~[~b(Bcn+l). 

We need the following fact: 

(f) If d = an+lCn+l, d' ~- d(b<_m) and d',.~d(b<_m), then d',~d. 

Suppose for a contradiction that  d..~d'. Since wp(d/b<_,~) = 1, we can choose 

e • clp(d) V) clp(b<m) N acl(db_<m) with wp(e) = 1 (see [Hr, 4.1]). Choose a long 

Morley sequence d~, a < Wl, in stp(d/b<m) and let e~ be a conjugate of e over 

d~b<_m. 

We see that for a ¢ /3 < Wl, clp(e~) ¢ clp(ef~) (since d ~ d ~  and 

wp(d~d~/e~ez) = 2) and e~ • clp(b<m). Hence in the clp-pregeometry on p(E), 

in the clp-closure of some finite set there are uncountably many points. On 

the other hand, the division ring underlying this pregeometry is countable (see 

Section 1), a contradiction. 

Using (f) we get that 

(g) wp(b) = 1, b • clp(d) N acl(b<m) and stp(b) is regular (in the ordinary 

sense). 

Indeed, choose k < w so large that  b C_ dc l (d l . . ,  dk). We have wp(d~. . ,  dk/b) 

= wp(dl . . .  dk/b<,~) = k. On the other hand, 

wp(dt . . . dk/b) + wp(b) = wp(dl - . . dkb) 

= w p (d l . . . d k )  = wp(d2 . . . dk /d l )  +wp(d l )  < k + 1 

(by (f)). So wp(b) _< 1. As wp(d/b) = 1, we get that wp(b) = 1 and b • clp(d). 

Since b • acl(b<m) and b<m is semiregular, also b is semiregular, and by [Hr], 

stp(b) is regular. 

Next we prove that  

(h) stp(b) is not realized in clp(b<m). 

8 8 

Otherwise, choose b' c clp(b<m) with b' -- b and then an+ 1 '  with an+lb' 'Cn+l -- 

a~+lbCn+l. We see that  a,~+l' C clp(Cn+lb') C_ clp(b<mcn+l), hence rc~+l is 

realized in clp(b<,~cn+l), a contradiction. 
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Similarly, by the minimality of n we get that stp(b,~) is not realized in clp(b<m). 

Let ~(y) be a p-formula over acl((~), witnessing that bm is regular, and let X(x, y,-2) 
be a formula, true of (b, b,~, b<m), witnessing b E acl(b_<,~). Since stp(bm) is not 

modular we can assume that P~ -- S(acl(0)) M [5], and no type in P~ is modular. 

By [Ne4, 2.13], the set of types in P~ realized in clp(b<m) is closed in P~, and 

stp(bm) lies outside this set, so diminishing 5 we can assume that  no type in P5 

is realized in clp(b<,~). Let r = stp(b<m). Now it is easy to check that  

~(x) = ("for generic -2 realizing r",  3y(x(x, y,-2) A (~(y))) 

is a p-formula true of b, P~ = [~] M S(acl(0)) and .M(P~) = 1. 

So by Lemma 3.1 we have that either b is Q-finite or the Aut(Q)-orbit of 

stp(b) is open (or, in other words: tp(b/Q) is Q-isolated). We shall exclude 

the latter possibility. If b.~BCn+l then an+l E clp(BCn+l), a contradiction. So 

b.LBcn+l. If b is not Q-finite and is Q-finite over B, then since ]B I < [AI, by the 

induction hypothesis either stp(b/B) is modular or for some regular Q-finite b' 
independent of B, b~_.b'. In the first case we get easily that stp(an+l/BCn+l) is 

modular, so stp(a/A) is modular, a contradiction. In the second case we satisfy 

the requirements of the theorem replacing b by bC So we may assume that  b is 

not Q-finite over B, meaning that stp(b/QB) is Q-isolated over B. 
Then since tp(c~+l/b<_mQ) is Q-isolated over b<m and cn+l.J~b_<,~, we get that  

tp(cn+lb/Q) is Q-isolated over B (cf. Lemma 1.1 and [Ne2]). 

Hence also tp(b/Cn+lQ) is Q-isolated over BC~+l. On the other hand, since 

a~+l is Q-finite over Bc~+l and b E Clp(an+lCn+l), J~d(P~o) : 1 gives that  b is 

Q-finite over BCn+l, a contradiction. 

So we have proved that b is regular, Q-finite and an+l.~C~+l(b). This implies 

also that a~+l~b(Bcn+l), which finishes the proof. 

4. C o n c l u s i o n  

Assume (as in the previous section) that  ~5 is a countable disjunction of formulas 

over 0 with acl(0) C q)(E), Q = ~5(M*) for a countable model M* of T and p is 

a meager stationary type over 0 orthogonal to ~5. 

We use the word "regular" in the sense of the previous section. Let P = 

{stp(a): a E ~ is regular}. For any model M of T let pM __ {r E P: r is realized 

in M}. Suppose M E KQ and A C_ M is an independent set of regular elements. 

We call A a Q-finite basis of M if 

(a) every a E A is Q-finite, 
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(b) for every Q-finite regular b C M, stp(b) is realized in clp(A) 

and A is minimal with respect to (a), (b). 

Remark 4.1: For regular b and any A C_ M, stp(b) is realized in clp(A) iff stp(b) 

is realized in clp(A) N M. 

Proof: Suppose stp(b) is realized in clp(A). Wlog A is finite. Choose a p-formula 

~a(x) over acl(O) witnessing that b is regular. Choose a finite c c M such that  

Wp(C) = 0 and U(A/c) is minimal possible. ~(x) is also a p-formula over c and 

A/t(P~) = 1 (now P~ = {r e S(acl(c)) M [~]: wp(r) = 1}). 

Also, stp(b/c) is realized in clp(A), say by b'. Choose a formula ¢(x) over A 

true of b' such that ¢(x) F- ~(x) and ¢(x) forks over c. Since A4(P~) = 1 we 

have that  Trc(¢(x))  N P~ is finite. Wlog Trc(¢(x)) N P~ = {stp(b/c)}. 

Let b" E M realize ¢(x).  If stp(b"/c) • P~ then wp(b"c) = 0 and U(A/b"c) < 

U(A/c), contradicting the choice of c. So stp(b"/c) e P~ and stp(b"/c) = 

stp(b/c). Hence stp(b) is realized in clp(A) N M. 

Theorem 2.6 implies the following. 

LEMMA 4.2: If M E KQ is countable, then M contains a finite Q-finite basis 

and all Q-finite bases of M have the same size. 

We shall prove the following: 

THEOREM 4.3: Assume M E KQ is countable and A is a Q-finite basis of M. 

Then there is a countable M' E KQ Q-atomic over A such that pM = pM'. In 

particular, up to an isomorphism preserving Q setwise, there are countably many 
sets in (pM: M E KQ is countable). 

Proof: By Lemma 4.2, A is finite. By Lemma 1.1 we find a countable N E KQ 

Q-atomic over A. Notice that A is a Q-finite basis of N. Let B C_ M [B' C C_ N, 

respectively] be a maximal set of regular elements such that 

(a) A U B [A U B',  respectively] is independent, 

(b) B [B', respectively] is Q-atomic over A, and 

(c) for every p-formula ~a over acl(~) with A//(P~) -- 1, {stp(b): b C B} 

[{stp(b): b • B'}, respectively] is dense in P~. 

In order to satisfy (c) we build B in countably many steps. At each step a 

larger and larger finite part B0 of B is built so that (a) and (b) are satisfied. 

Then we consider some ~a as in (c) and some open set U in P~. By Lemma 3.1 
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we may find a b E M such that  (a) and (b) still hold for B0 U {b} and stp(b) E U. 

Since there are countably many p as in (c), in countably many steps we can 

ensure that  (c) holds. Similarly we deal with B ~. 

We shall prove that  

(d) every r E pM [pN respectively] is realized in clp(AB) [elp(AB'), 

respectively]. 

We deal with M only. Suppose a E M is regular and stp(a) is not realized in 

clp(AB). By the maximali ty of B, for some finite B" C_ B, tp(aB"/QA) is not 

Q-isolated over A. By Lemma 1.1, tp(a/QAB") is not Q-isolated over AB". By 

Lemma 3.1, a is Q-finite over AB". a is not Q-finite over 0 (otherwise stp(a) 

would be realized in clp(A), since A is a Q-finite basis of M). Hence also stp(a) 

is not modular.  By Theorem 3.2 we have two cases. 

CASE 1: stp(a/AB") is modular. Then stp(a) is realized in clp(AB"). 

CASE 2: a.~b(AB") for some regular Q-l~nite b independent of AB '~. Again, 

we get tha t  stp(b) is realized in M. Since A is a Q-finite basis, stp(b) is realized 

in clp(A). This also implies that  stp(a) is realized in clp(AB"). 
As in the proof of Lemma 1.1(5)(see [Ne2]), using (c) we can find f E Aut(Q/A)  

with f(B') = B. Let M '  = f(N). S o r  E pM i f f r  is realized in clp(AB) iff 
r E pM', hence pM = pM'. 

For the last clause notice that  pM is determined up to isomorphism by 

tp(A/Q), or even by the pseudo-type of A over Q. Since A is an independent set 

of Q-finite regular elements, tp(A/Q) is ~--stable (see [Neal). By [Ne3] there are 

countably many good 7--stable pseudo-types over Q, hence we are done. 

Now we assume that  G is a 0-definable meager group, 2t4(G) = 1 and p is the 

generic type of G °. In this case we set q)(z) so that  (I)(~) = acl(0) U G - ,  where 

G -  = clp(O) n G. As before, Q = (I)(M*) for some countable model M* of T and 

we try to classify sets of the form G(M), where M E KQ is countable. Notice 

that  here for an element a of G, a is generic iff a is regular. By Theorem 4.2 we 

can describe G M, that  is, we know which eosets of G°(M) are realized in M. 

Below we shall see that  we can choose a clp-basis C of G(M) extending a Q- 

finite basis A of M,  so that  the pseudo-type of C over Q is determined by the 

pseudo-type of A over Q and dim(p(M)).  Since we know which cosets of G°(M) 
are realized in M (namely these containing a generic element in clp(C) or meeting 

G-(M)), in order to describe G(M) it is enough to 

(*) describe G°(M) and the possible ways in which a generic element from 

clp(C) may be chosen in a given coset of G°(M). 
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We may choose C so that it contains a basis Co of p(M). We know that G°(M) 
is essentially a vector space over FG. So again in order to describe G°(M) over 

C and Q it is enough to 

(**) describe the possible ways in which a generic element from clp(Co)nG°(M) 
may be chosen in a given coset of G - ( M ) .  

To render (*) and (**), [Bull and [Pi] use some additional properties of G: weak 

minimality or the (weaker) assumption that any forking extension of a generic 

type in G has Morley rank. These facts imply that we can choose representatives 

of the cosets in question in the prime model of Th(G) over QC, contained in M, 

and then clearly G(M) must be prime (that is, atomic) over QC. This completely 

describes the isomorphism type of M in these cases. 

In general we cannot hope for that  much. The possibility to choose in some 

canonical way representatives of the cosets mentioned above seems to depend 

on the properties of the pseudo-endomorphisms of G. For instance, suppose 

c E G o N c lp (Co) \  G - .  Then c, or more properly c + G - ,  is in the span (with 

respect to the ring FG) of Co. This tells us that c + G -  meets M, but this does 

not necessarily determine the isomorphism type of (c+G-) (M) over Co U G -  (M). 

This is so because the images of elements of G O via psendo-endomorphisms are 

determined only up to G - ,  so we do not have in general a method of picking an 

element in (c + G - )  n M in a canonical way. 

If the ring of pseudo-endomorphisms of G is just a prime field (necessarily 

finite), we have such a method and can prove Vaught's conjecture for Th(G) 

relative to • (in fact, relative to G - )  and some finite tuple realizing an isolated 

type over 0. 

Assume M is any model of T. We can choose generic e0 , . . . ,  ek C G(M) with 

the following properties: 

1. tp (e0 . . ,  ek) is isolated, 

2. e 0 , . . . ,  ek are pairwise dependent, and 

3. s tp (e0) , . . . ,  stp(ek) are pairwise distinct and 

CL(e0) n (~ \ ~m) = {stp(e0) , . . . ,  stp(ek)} 

(that is, whenever e E G \ G m  is generic and depends on e0, then stp(e) = 

stp(ei) for some i). 

Here CL is defined as in the beginning of Section 2, for T = G. Clearly, for every 

i, stp(ei) is non-modular. Let E = {e0 , . . . ,  ek}. Assuming FG is a prime field, 
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we shall prove Vaught ' s  conjecture for G relative to G -  and E.  We shall use the 

following lemma:  

LEMMA 4.4: Assume FG is a prime field. Then there are open neighbourhoods 

Vi of  stp(ei),  i ~_ k, in S(acl(O)) and numbers nij > O, with nii = 1, such that for 

every i, i f  e i' realizes a generic type in Vi and ej' = e j  + n i j ( e  ~ -- e~),j _< k, then 

the elements e}, j ~ k sat isfy conditions (2), (3) above. 

l 8 
Proof." The  proof  is similar to [Lo], [Ne6]. Choose e ~ - - . e  k - e 0 - - - e k  with 

I I e'o.' ,  e k ~ e o . . ,  ek. Let c~ = e i - el. We see tha t  c o , . . . ,  ck are generic in G °, and 

are pairwise dependent .  Since FG is a pr ime field, there are numbers  nij  > 0 

such t ha t  c i - n j i c  j E G - .  We have tha t  n i i ' n j i  -= 1 ( m o d q ) ,  where q = 

char(FG).  As in [Lo], [Ne6] it follows tha t  for every i, if e7 -~ e~ then  lett ing 

e~ = ej + nij(e* - ei) we have tha t  

(a) c ; , . . . , e ~  satisfy (2) and (3). 

, , s I 
(a) is clear when e*.j~e~. Now suppose e~ is a rb i t ra ry  with e i -- e~. Wlog e~.Le i e~. 

Let 
/ ! I * bj = ej + nij(ei  - e'i) and bj = ej + nij(e i - e~). 

We see t ha t  b'j = bj + nij(e~ - ei). By (a) (for the case when e~.Lei, applied 

e *  to ( i ,  e~) and (ei, e~)) we get tha t  bj.~ei, b}.~e* and bj - ej E G - .  Hence also 

b} - e~ C G - ,  so e~,~e*. This  proves (a). 

By compactness ,  (a) holds also for every generic e~ realizing a type  in some 

open ne ighbourhood  Vi of stp(ei) .  This  finishes the proof. 

THEOREM 4.5: Assume the ring ofpseudo-endomorphisms of G is a p r ime  field, 

M C KQ is a countable model of  T and, for every n < w, there are countably 

m a n y  good pseudo-types in Sn(Q). Then there is a finite set  D c_ M and a 

basis C of p ( M )  over D such tha t  G(M)  is Q-atomic over DC.  Hence Vaught ' s  

conjecture is t rue  for KQ. 

Proo~ Wlog E _C M.  Let A be a Q-finite basis of M containing a realization of 

p if p(M)  ¢ ~. Since the pre-geometry  is locally finite, we can choose a finite set 

A'  of generic e lements  of G(M)  such tha t  A' C_ clp(A) and, if a G - - c o s e t  meets  

clp(A) N M ,  then  it meets  A !. 

As in L e m m a  4.3, we can choose a maximal  set B C G(M)  of regular  e lements  

such t h a t  eo C B,  A B  is independent ,  B is Q-a tomic  over A and {stp(b): b C B} 

is dense in 6.  As in the proof  of L e m m a  4.3 we have 

(a) every r E ~M is realized in clp(AB). 
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The proof of Lemma 4.3 goes through even though B is now chosen only to be 

maximal in G(M) (not in M~q). 

CLAIM: Suppose B is Q-atomic over A and a E clp(A) M M. Then there is a 

tinite Bo C B such that B is Q-atomic over AaBo. 

Proof." We work in T(Aa). Let B = {bn, n < w}, rn = stp(bn). Suppose b~ is 

not Q-atomic over b<,~. By Theorem 3.4 either b~ is Q-finite over ~ or stp(b~/b<n) 
is modular,  or for some regular Q-finite c,~ independent of b<~, b~,~c~(b<~). 

There are at most finitely many n for which the first case holds (by Proposition 

2.2). The second case is impossible, since in this case b~ would be Q-finite over 

Ab<n (in the original signature), hence tp(bn/Ab<~) would not be Q-isolated over 

Ab<n. Also, using the basis lemma one gets that  the third case may happen only 

finitely many times. 

Indeed, let I = {n: the third case occurs} and S = {c~: n E I}. Choose finitely 

many increasing n l , . . . ,  nk E I such that  for every c E S, stp(c) is realized in 

clp(cnl,...,Cnk). We see that  for every n E I larger than m a x { n l , . . . , n k } ,  

stp(bn/b<n) is modular. So I must be finite. This proves the claim. 

Clearly, B is Q-atomic over Ae0. Using the claim we find a finite B '  C B such 

that  B is Q-atomic over AA~BIE. Let D = AAIB~E. 
Let C be a basis o fp (M)  over D. Since 3d(p) = 0, no element of C is Q-atomic 

over D. Hence BCD is independent. Also, since Aut(Q/D) = Aut(Q/CD) 
(regarded as a group of permutations of Q), we have 

(b) B is Q-atomic over CD. 

It  is enough to prove that  

(c) G(M) c dcl(BCDQ). 

Since Fa is a prime field, every pseudo-endomorphism of G is represented by a 

function fn mapping x to nx, n E Fa, the functions fn are defined on all of G. 

It  follows that  for every X C G and x E G, x E clp(AX) iff x E clp(A'X). 
Hence every co-set of G - ( M )  in G o (M) contains an element in dcl(A'C), which 

gives G°(M) C dcl(A'CQ). So to prove (c) it is enough to show that  every co-set 

of G°(M) in G(M) contains an element in dcl(BCDQ). Since {stp(b): b E B} is 

dense in ~, it suffices to show that  for some open non-empty set Vd in ~, every 

type in Vd M 6 M is realized in del(BCDQ). 
Let V0 be the set from Lemma 4.4 and choose an open set V d C_ V0 containing 

stp(e0) such that  whenever e~ realizes a type in V~ng, then CL(e~) C Ui V~UGm. 
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Suppose r E V~n~ M. By (a), 7" is realized in clp(AB). So choose b realizing r with 

b E clp(AB) (b may lie outside M!). However, since the functions fn, n C FG, are 

defined on all of G, there is some b ~ in the {fn, n E FG}-span of A¢B such that 

bJ~b ~. The {fn, n E FG}-span of AzB is simply the subgroup of G generated by 

A~B, so b ~ C dcl(A¢B), whence b ~ E M. b z realizes a generic type in some ~. 

Let b ~ = eo + noi(b ~ - ei). So b H E dcI(A¢BE). According to Lemma 4.4, b"~b 

and b" ~ b. So we have (c). 

COROLLARY 4.6: Assume G is a meager group of U-rank w and M-rank 1, and 

Fa is a pr ime field. Then Vaught's conjecture holds for Th(G).  

Proof'. Let T = Th(G).  T[G- is a superstable many sorted theory of finite 

U-rank, so we have Vaught's conjecture for it by [Bu2]. Moreover, Buechler 

proves there that  any countable model of such a theory is prime over a Morley 

sequence. Hence by [Ne3, Ne4], for every countable model M,  all good pseudo- 

types over Q = G - ( M )  are T-stable, hence there are countably many of them. 

Applying Theorem 4.5 we get Vaught's conjecture for T relative to Q. Since we 

have Vaught 's  conjecture for T[G-,  we have it for T. 

Actually, checking the proof one can see that  in Corollary 4.6, if Th(G) has few 

countable models, then G(M) is just atomic over some finite set E and finitely 

many Morley sequences over E. 

An important  point in the proof of Theorem 4.5 was the assumption that  F a  

is a prime field. This assumption implies that  we can represent elements of F a  

as real endomorphisms of G, with values defined firmly in G (and not only up to 

G - ) .  We did not use the finiteness of Fa for anything else. 

Now suppose FG is finite (and not necessarily a prime field). Then we can find 

a single 0-definable non-generic subgroup H of G, a 0-definable generic subgroup 

G ~ of G and representatives of elements of F c  which are defined on G', such 

that  these representatives, and also compositions of any two of them, have values 

determined up to H (or, in other words, belonging to G/H). In this situation we 

have the following corollary: 

COROLLARY 4.7: Assume G is a meager group of A,t-rank 1, with Fa finite, 

Th(G) has few countable models and H is a subgroup of G described above. Let 

G* = G/H. If there are countabIy many good pseudo-types over any countable 

Q = ( G * ) - ( M ) ,  then Vaught's conjecture is true for G* relative to (G*)- .  

Proof'. We choose E as in Theorem 4.5, and add to it representatives of G'-  

cosets of G. Then we choose ABC in Gt(M) like in the proof of Theorem 4.5 
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(for G := G') (A is chosen as a Q-finite basis of G t over (G*)-) .  Then using the 

above remarks we show that  G*(M) C_ acl (CD(G*)-(M)) .  

COROLLARY 4.8: Assume G is a meager group of U-rank ca and M-rank  i, with 

Fa finite, and Th(G) has few countable models. Then for some non-generic 

O-definabIe H <_ G °, T h ( G / H )  has countably many countable models. 
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